「理念の認識と数学」について
数学を構成する解析学と幾何学の各々において、形式は絶対的な認識の仕方が支配していなければならない
数学的認識は単なる抽象的概念の認識でも具体的事物の認識でもなく、特殊な直観のうちに表現された普遍的理念の認識である
普遍的なものと特殊なものをその統一において表現することは一般に「構成」と呼ばれる
それは「論証」と同じである
科学におけると同様、日常の知識においても支配的な「因果結合の法則」を純粋な理性同一性の領域へ高める認識様式は、外的目的を必要としない
数学が、例えば天文学や物理学一般に大きな影響を与えたとしても、その結果からだけでは数学が持つ絶対的性格を認識したことにはならない
そのためには、まず数学自身がその根源へと立ち還り、そこに表現された理性の範型をより普遍的に把握する必要がある
数学の諸形式とは、象徴(記号)である
現代の数学者からは、ユークリッドが所有していた象徴を解くための鍵が失われている
それを見出すには、象徴を徹底して純粋理性の形式――客観的形態をとって他のものへ姿を変えて現れる理念の表現――として把握するだけである
しかし現代の数学の授業は、これらの形式が持っていた意味へと遡ることはしない
そこで重要になるのが哲学である
学生には根源的学問としての数学の可能性、そして幾何学と解析学との対立に注意してもらいたい
これは実在論と観念論との対立に対応しているのである
「哲学とその直観」について
根源知の他に依拠すべき如何なる原像も持たない学問とは、あらゆる知の学問、哲学である
哲学が根源知の学問であるという万人が認める証明はできない
しかし、そのような根源知の学問が必要だということは証明できる
しかも、そこに出される概念は哲学のものではないだけではなく、そもそも学問たり得るものの概念ではないことも証明可能である
哲学と数学は、ともに普遍的なものと特殊なものとの絶対的同一性に基づいている点で等しい
しかし、哲学の行う直観は数学のものとは異なり、反省的な直観ではあり得ない
哲学の直観は直接的な理性直観(知的直観)で、その対象(根源知)と同一である
知的直観において何かを表現することは、哲学的に「構成」することである
あらゆる統一の根底にある普遍的統一性と同様に、特殊な諸々の統一も、根源知が有する絶対性と同じ絶対性をそれぞれのうちに受容しているので、理性直観のうちにのみ含まれることができる
つまり、哲学は理念の学問、事物の永遠の原像についての学問である
知的直観なしに哲学はあり得ない!
哲学の場合、直観もことごとく理性のうちへと帰っていくので、哲学的直観を持たない者は、その直観について語られていることを理解することができない
つまり、哲学の直観は目に見える形では与えられないのである
哲学的直観を持つための条件は、一切の有限な認識が空虚であることを明晰に心の底から洞察していることである
我々はこの直観を自分の中で培うことができる
哲学者においては、直観が一切を理念において現れるがままに見る熟練した能力にならなければならない
哲学の効用について語ることは、この学問の品位に関わると思う
そもそも哲学の効用を問題にし得るような人間は、きっとまだ一度たりとも哲学の理念を持つことができなかったのである
哲学はそれ自身によって有用性との関係を全く離れて語られる
哲学はそれ自身のためだけに存在するのである
もし他のもののために存在するとすれば、哲学はその本質そのものを直ちに廃棄してしまうだろう
一方、哲学に対する非難について語ることが全く無駄だとは思わない
哲学はその有用性のゆえに推奨されるべきではない
しかし、哲学が有害な結果をもたらすという虚構によって、外の社会との関わりを持つことが制限されるべきではない
0 件のコメント:
コメントを投稿